Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
نویسندگان
چکیده
Aspiration lesions of the amygdala were found previously to produce a severe impairment in visual discrimination learning for auditory secondary reinforcement in rhesus monkeys (Gaffan and Harrison, 1987). To determine whether excitotoxic amygdala lesions would also produce this effect, we trained four naive rhesus monkeys on the same task. The monkeys were required to learn 40 new visual discrimination problems per session in a situation in which visual choices were guided by an auditory secondary reinforcer that had been previously associated with food reward. Bilateral excitotoxic lesions of the amygdala had no effect on the rate of learning visual discrimination problems for auditory secondary reinforcement. We also tested the amygdalectomized monkeys on a reinforcer devaluation task and compared their performance with a group of three normal monkeys. The monkeys first learned to discriminate 60 pairs of objects, baited with two different food rewards. Each of the food rewards was then devalued by selective satiation in two separate experimental sessions. Normal controls tended to avoid displacing objects that covered the devalued food to a significantly greater degree than did the amygdalectomized monkeys, indicating that the excitotoxic amygdala damage interfered with reinforcer devaluation effects. Our results are consistent with the idea that the amygdala is necessary for learning the association between stimuli and the value of particular food rewards; however, the amygdala is not necessary for maintaining the value of secondary reinforcers, once they have been learned.
منابع مشابه
Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
Neuropsychological studies in nonhuman primates have led to the view that the amygdala plays an essential role in stimulus-reward association. The main evidence in support of this idea is that bilateral aspirative or radiofrequency lesions of the amygdala yield severe impairments on object reversal learning, a task that assesses the ability to shift choices of objects based on the presence or a...
متن کاملAmygdalectomy and disconnection in visual learning for auditory secondary reinforcement by monkeys.
Nine monkeys in 3 groups took part in an experiment on visual discrimination learning set in an automatic apparatus. Each new visual discrimination problem was solved using auditory secondary reinforcers. Primary food reinforcement was delivered only after a new problem had been solved to a criterion, and the problem was then replaced by a new one; thus, within-problem learning relied purely on...
متن کاملCombined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.
The amygdala and orbital prefrontal cortex (PFo) interact as part of a system for affective processing. To assess whether there is a hemispheric functional specialization for the processing of emotion or reward or both in nonhuman primates, rhesus monkeys (Macaca mulatta) with combined lesions of the amygdala and PFo in one hemisphere, either left or right, were compared with unoperated control...
متن کاملJN-00968-2003.R1 Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys
The amygdala and orbital prefrontal cortex (PFo) interact as part of a system for affective processing. To assess whether there is a hemispheric functional specialization for the processing of emotion or reward or both in nonhuman primates, rhesus monkeys (Macaca mulatta) with combined lesions of the amygdala and PFo in one hemisphere, either left or right, were compared with unoperated control...
متن کاملDifferential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques.
We assessed the involvement of the orbital prefrontal cortex (PFo), the prelimbic region of the medial prefrontal cortex (PL), and the amygdala in goal-directed behavior. Rhesus monkeys were trained on a task in which two different instrumental responses were linked to two different outcomes. One response, called "tap," required the monkeys to repeatedly touch a colored square on a video monito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 15 شماره
صفحات -
تاریخ انتشار 1997